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LETTER TO THE EDITOR 

Finite-size scaling of the quantum Ising chain with periodic, 
free, and antiperiodic boundary conditions 

Theodore W Burkhardtt and Ihnsouk GuimS 
Institut Laue-Langevin, I56X, F-38042 Grenoble Ctdex, France 

Received 20 August 1984 

Abstract. We give exact results for the energy spectrum of a chain of N king  spins in a 
transverse field with periodic, free, and antiperiodic boundary conditions. The dependence 
of the energy gaps on boundary conditions is compatible with predictions of conformal 
invariance for correlation lengths in two-dimensional strips. The feasibility of calculating 
surface critical indices using phenomenological renormalisation with free boundary condi- 
tions and the convergence for large N are discussed. 

Consider the inverse correlation length K,( N )  associated with the two-point correla- 
tions of an operator 6 in a two-dimensional spin system with isotropic interactions 
defined on a strip with infinite length and a width of N lattice spacings. In a recent 
letter Cardy (1984a) proved that conformal invariance of the correlation functions at 
the critical point implies the relations 

3 periodic boundary conditions 2 T x r u l k )  

lim NK,( N )  = 

~x ;urf), free boundary conditions. 
N - a :  

H~~~ X(,bulk) and X(SUrf) , are the bulk and surface scaling dimensions$ of the operator 
6. The first of these relations was known previously from exact calculations and 
numerical studies (Luck 1982, Derrida and de Seze 1982, Nightingale and Blote 1983, 
Privman and Fisher 1984, and references therein) on a variety of models. The second 
relation has recently been verified numerically for Ising strips (Burkhardt and Guim 
1985). The two relations are of considerable importance in finite-size scaling (Barber 
1983), as they enable one to determine the scaling dimensions x:"'~), xturf) directly 
from K , ( N )  without introducing a perturbing field conjugate to 6. 

In this letter we discuss the influence of periodic, free, and antiperiodic boundary 
conditions on the finite-size scaling properties of the two-dimensional Ising model in 
the extreme anisotropic or quantum-Hamiltonian limit (Suzuki 1971, Scalapino et a1 
1972, Fradkin and Susskind 1978, Kogut 1979, Hamer and Barber 1981). In this limit 

t Permanent address: Department of Physics, Temple University, Philadelphia, PA 19122, USA. 
'$ Present address: Department of Chemistry, Columbia University, New York, NY 10027, USA. 
5 In an infinite bulk system, t scales as 

&(r,  f )  = b-"Y'"&(b-'r, b, r ) J i ,  f = T - T , ,  

in thermal averages (Kadanoff 1976, Patashinskii and Pokrovskii 1979). At the free surface of a semi-infinite 
system, .rFrr) replaces (Binder 1983). 
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the transfer matrix T takes the form 

where T is an infinitesimal and H is the Hamiltonian of a one-dimensional chain of 
quantum spins in a transverse field. From (2), it follows that the inverse correlation 
length K,(N) is given by 

K, ( N )  = TAw ( N )  (3) 

where A, is the energy gap between the ground state I$o) and the first excited state 
IQ) with non-vanishing matrix element (~+!l&lI+!~). 

Relations ( 1 )  are applicable to strips with isotropic interactions. (See Nightingale 
and Blote 1983, Burkhardt and Guim 1984 for generalisations to anisotropic couplings.) 
Equation (3), on the other hand, holds in the extreme anisotropic limit. Penson and 
Kolb (1984a, b) have presented evidence that the inverse correlation lengths K,( N )  at 
criticality in the limit N + CO in the isotropic and extreme anisotropic cases differ by 
a proportionality constant independent of the particular operator 6. Our results (see 
also Burkhardt and Guim 1985) suggest that the proportionality constant is also 
independent of the boundary conditions. (This also follows from intuitive arguments 
(Fradkin and Susskind 1978, Barber er a1 1984) in which the lattice constants of the 
anisotropically coupled system are rescaled to restore isotropy of the correlations.) 
For Ising strips in the extreme anisotropic limit, we find that 

27r;r~~"'~' ,  periodic boundary conditions 
lim NAh, (N)  = c x TxE"rf) 
N+X , free boundary conditions 

with the same proportionality constant c for spin-spin and energy-energy correlations 
with both periodic and free boundary conditions. 

Hamer and Barber (1981) have calculated the energy gap of the quantum Ising 
chain (corresponding to spin-spin correlations in the Ising strip) with periodic boun- 
dary conditions and discussed the finite-size scaling properties. As mentioned above, 
we consider periodic, free, and antiperiodic boundary conditions and both spin-spin 
and energy-energy correlations. Gehlen et a1 (1984) have recently reported results for 
the energy gaps of the quantum Ising chain and the Z, Potts chain with different 
boundary conditions. Their numerical results for the Z3 model agree with our own, 
but we disagree with their statement that the energy gap in the Ising case is independent 
of boundary conditions to order N - ' .  

The chain of N Ising spins in a transverse field A with free boundary conditions 
has the Hamiltonian 

N N - l  

HF=-A C S i - 2  C S",s",+,. 
n = l  n=I 

Here S: ,  SZ, are spin-; angular momentum operators. For periodic and antiperiodic 
boundary conditions an extra term H ,  = T2S",S; is included in the Hamiltonian. In 
the limit N + CO, the ground state is singular at h = 1, with A > 1 and A < 1 corresponding 
to strips with temperatures T > T, and T < T,, respectively. 

The Ising chain in a transverse field has been studied in great detail (see e.g. Katsura 
1962, Pfeuty 1970, Boccara and Sarma 1974). The model can be solved by introducing 
fermion creation and annihilation operators and diagonalising the resultant quadratic 
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form by a canonical transformation. A useful discussion of the general procedure has 
been given by Lieb et al (1961). 

In terms of fermion creation and annhilation operators c,, C A ,  equation ( 5 )  becomes 
(Lieb et a1 1961) 

n = l  n = I  

The extra term HI = F2S",7 to be included for periodic and antiperiodic boundary 
conditions takes the form (Lieb et a1 1961) 

N 

K =  c ct,cn. 
n = I  

Since exp ( i r  A") commutes with HF+ HI, HF+ H ,  is effectively quadratic in the fermion 
operators in the subspaces K even and K odd, but with different quadratic forms in 
each subspace. 

The Hamiltonians HF and HF+ HI may be re-expressed in the diagonal form 

A ( k )  = [ ( A  - 1)2+4A ~in ' (k/2)] ' '~  (9b) 
by a canonical transformation (Lieb et a1 1961) 

7 k  = ( g k n c n  + h k n c t , )  
n 

to quasiparticle (fermion) operators Tk, 7:. 

by the secular equation (Pfeuty 1970, Boccara and Sarma 1974) 
For free boundary conditions one finds that the allowed values of k are determined 

A- '=sin[(N+ l)k]/sin(Nk). (1 1) 

Jkl = [(2m + 1)/(2N+ l)]", (12) 
From equations (9) and (12) one sees that the ground-state energy corresponds to the 
quasiparticle vacuum and at A = 1 has the value 

At the critical field A = 1, equation ( 1  1 )  reduces to tan k N  = cot(k/2), so that 

m = 0 ,  1 , . . . ,  N-1. 

Since exp(irK) anticommutes with the x-component of the spin density but 
commutes with the energy density, these operators only couple the ground state to 
states with odd and even numbers of quasiparticle excitations, respectively. Thus for 
the case of free boundaries, the energy gaps AbF' and ALF) that determine the spin-spin 
and energy-energy correlation lengths according to (3) are given by 
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For periodic boundary conditions with X even or antiperiodic boundary conditions 
with X odd, the allowed k are 

k = [ ( 2 m  + 1)/  NIT, m=0 ,1 ,  . . . ,  N - 1  (15) 

while for periodic boundary conditions with X odd or antiperiodic boundary conditions 
with X even 

k = (2m/ N)T, m=0 ,1 ,  ..., N - 1 .  (16) 

The two sets cf k’s yield two different quasiparticle vacuum states. At A = 1, X is even 
for both of these states (see Lieb et al 1961, appendix F). Thus the ground-state 
energies for periodic and antiperiodic boundary conditions, respectively, are given by 

Bearing in mind that exp(irX) undergoes a change in sign for each quasifermion 
excitation, we find the following spin-spin and energy-energy gaps in the periodic 
and antiperiodic cases 

A:‘’ = A(0) + ELA’- EhP’ =tan( 7r/4N) (18a) 

A‘,P’=A(r/N)+A[(2N- l ) . r r / N ] = 4 s i n ( ~ / 2 N )  (18b) 

Ai”’= A ( r / N ) +  ELP)-ELA’=2 s i n ( ~ / 2 N ) - t a n ( 7 ~ / 4 N )  (18c) 

ALA’ = A(0) + A(277/ N) = 2 sin( T /  N). ( 1 8 4  
We have confirmed the analytic expressions (13), (14), (17), (18) for the ground-state 

energies and energy gaps by calculating the excitation spectrum of the Ising chain in 
the spin representation of (5) numerically for N = 2,3, . . . ,8.  

From the analytical expessions for the energy gaps one finds 

7T/4, periodic boundary conditions 

lim NA,( N )  = ~ / 2 ,  free boundary conditions (19a) 
N - W  

37T/4, antiperiodic boundary conditions 

lim NAJ N )  = 27r, all three boundary conditions. (19b) 
N+C2 

We now compare these results with (4). The well known critical behaviour (McCoy 
and Wu 1973) m - t”’, m ,  - tl” for the bulk and surface magnetisations of the 
two-dimensional Ising model and g( r )  - r-”4, gI1( r )  - r-I for the bulk and surface pair 
correlation functions implies (see footnote on title page) 

(20a) 
- t 2  In t for the bulk and surface energy 

(20b) 

X:bulk) - 1 xy’ = 1 - 8 ,  2 .  

From the singular behaviour E - t In t, 
densities?, one obtains 

1, - 2. XFurf)  - XIbulk) = 

t f i e  result E ,  - r2-Q = t d’ , established for the n-vector model to all orders in E = 4 - d by Dietrich and 
Diehl (1981), implies xYf)= d. See also Cardy (1984b). 
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These four scaling dimensions are entirely consistent with equations (4) and (19) and 
the proportionality constant c = 1. 

Assuming that equations (4) hold for other two-dimensional models besides the 
Ising model and their one-dimensional quantum analogues, we estimate the surface 
critical exponent ql1 = 2xYrf) with which surface pair correlations decay in the two- 
dimensional three-state Potts model from the numerical results of Gehlen er a1 (1984) 
for the 2, chain. These authors find that A:p)/AIF) + f as N + 00. Setting = 
2q/qI1 =$ and making use of the known value q =& (Nienhuis er a1 1980, Pearson 
1980), we obtain qll =:. This value agrees with the exact result recently obtained by 
Cardy ( 1984b) with conformal-invariance methods. 

Phenomenological renormalisation (Nightingale 1982, Barber 1983) has proved to 
be an extremely reliable method for determining the bulk critical properties of low- 
dimensional systems. In two-dimensional strips the predictions often converge toward 
limiting values, as the strip width N increases, more rapidly than one would expect 
on general grounds (Privman and Fisher 1984). Derrida and de Seze (1982) have 
studied the convergence analytically in two-dimensional Ising strips with periodic 
boundary conditions. Equation (1 6)  provides a way to determine surface critical 
exponents using phenomenological renormalisation with free boundary conditions. 
We now make use of our analytical results to study the convergence of phenomenologi- 
cal renormalisation in Ising strips with free boundaries in the extreme anisotropic or 
quantum-Hamiltonian limit. 

Expressed in terms of the energy gap As(N, A )  corresponding to the spin-spin 
correlation length via (3), the fundamental equation of phenomenological renormalisa- 
tion takes the form (Barber 1983) 

NAs( N, A ) = "As( N', A'). (21) 

For free boundary conditions AIF'(N, A )  = A ( k , ( N ,  A ) ) ,  where A(k) is given by (9b) 
and k , ( N ,  A )  is the smallest positive value of k that satisfies (11). At A = 1, k , ( N ,  1)  = 
77/(2N+ I),  in agreement with (14a). Expanding A!F)(N, A) about A = 1, one finds 

bbF)( N, A )  = ~ +. . .)+Bo( 1 +N+1/2 Bl +. . . ) (A - 1) 

c2 + . . . ) (A  - I y + .  
( N  + 1/2)2 

+iCo(N+ 1/2)( 1 + 

with Ao=.rr/2, A2=-.rr2/96, Bo=2/.rr, B I = r 2 / 8 ,  and C , = ~ / I T - ~ ~ / I T ~ .  
Setting N ' =  N - 1 in equation (21), we obtain estimates A,(N) and y t ( N )  for the 

critical field and thermal scaling index, respectively, from the fixed point and the 
linearised form of the equation at the fixed point. An estimate for the surface magnetic 
scaling index yh, = d - 1 - xPurf) is given by yh,( N )  = 1 - T - ' N A : ~ ) (  N, A,( N ) ) ,  in 
accordance with (4b) and c = 1. Making use of the expansion (22), we find the following 
behaviour in the large-N limit 

(23 a 1 A,(N)=l  -(Ao/2B0)N-'+. ., 

Recent numerical results (Burkhardt and Guim 1985) for Ising strips with isotropic 
interactions and free boundary conditions are consistent with leading corrections to 
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the exact values of K, (critical coupling), y,, and yh, of order N - 2 ,  N- l ,  and N-I ,  as 
in equations (23). For Ising strips with isotropic interactions and periodic boundary 
conditions, there is faster convergence, the leading corrections to K ,  and y ,  varying 
as W 3  and N - 2 ,  respectively (Derrida and de Seze 1982). Despite the slower conver- 
gence with free boundaries, it is possible to determine critical properties with high 
precision (see e.g. Barber er al 1984, Burkhardt and Guim 1985, Gehlen er al 1984) 
by considering sequences of N values and extrapolating to N = a. 

That N in equation (22) always occurs in the combination N + &  suggests replacing 
(21) by ( N +  1/2)A,(N, A )  = ( N ’ +  1/2)A,(N’, A’) .  The fixed point of this equation 
approaches the exact value A, = 1 with a deviation of order K3,  instead of N-* as in 
(23a). The deviation from the exact scaling index y,= 1 is again of order N-I ,  as in 
(23b). 

Equations ( 1  6) and (46) should prove very useful in determinations of surface 
scaling indices with finite-size scaling. An interesting open question concerns the 
extension of equations ( 1 ) to antiperiodic boundary conditions. 

We thank J L Cardy, E Derrida, and J. Lajzerowicz for helpful comments. 

References 

Barber M N 1983 in Phase Transitions and Critical Phenomena vol8, ed C Domb and J L Lebowitz (London: 

Barber M N, Peschel I and Pearce P A 1984 J. Stat. Phys. in press 
Academic) 

inder K 1983 in Phase Transitions and Critical Phenomena vol8, ed C Domb acd J L Lebowitz (London: 
Academic) 

Boccara N and Sarma G 1974 J. Physique Lett. 35 L95 
Burkhardt T W and Guim I 1985 J. Phys. A :  Math. Gen. 18 L25 
Cardy J L 1984a J. Phys. A :  Math. Gen. 17 L385 
__ 1984b submitted to Nucl. Phys. B 
Derrida B and de Seze L 1982 J. Physique 43 475 
Dietrich S and Diehl H W 1981 Z. Phys. B 43 315 
Fradkin E and Susskind L 1978 Phys. Rev. D 17 2637 
Gehlen C, Hoeger C and Rittenberg V 1984 J.  Phys. A :  Math. Gen. 17 L469 
Hamer C J and Barber M N 1981 J.  Phys. A: Math. Gen. 14 241 
Kadanoff L P 1976 in Phase Transitions and Critical Phenomena vol Sa, ed C Domb and M S Green (London: 

Katsura S 1962 Phys. Rev. 127 1508 
Kogut J 1979 Rev. Mod. Phys. 51 659 
Lieb E, Schultz T and Mattis D 1961 Ann. Phys., N Y  16 407 
Luck J M 1982 J. Phys. A :  Math. Gen. 15 L169 
McCoy B M and Wu T T 1973 The Two-Dimensional Ising Model (Cambridge: Harvard) 
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A :  Math. Gen. 13 L189 
Nightingale M P 1982 J. Appl. Phys. 53 7927 
Nightingale M P and Bliite H 1983 J. Phys. A :  Math. Gen. 16 L657 
Patashinskii A Z and Pokrovskii V I 1979 Fluctuating Theory of Phase Transitions (Oxford: Pergamon) 
Pearson R B 1980 Phys. Rev. B 22 2579 
Penson K A and Kolb M 1984a Phys. Rev. B 29 2854 
- 1984b Phys. Rev. B 30 1470 
Pfeuty P 1970 Ann. Phys., N Y  57 79 
Privman V and Fisher M E 1984 J. Stat. Phys. 33 385 
Scalapino D J, Sears M and Ferrell R A 1972 Phys. Rev. B 6 3409 
Suzuki M 1971 Prog. Theor. Phys. 46 1337 

Academic) 


